metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[silver(I)-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] methanesulfonate1

Grant A. Broker and Edward R. T. Tiekink*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio Texas 78249-0698 USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 22 August 2007; accepted 23 August 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.006 Å; R factor = 0.054; wR factor = 0.132; data-to-parameter ratio = 15.5.

The asymmetric unit in the polymeric title compound, $\{[Ag(C_{12}H_{10}N_4)]CH_3SO_3\}_n$, comprises two Ag atoms, a 4-pyridinealdazine molecule in a general position, two 4-pyridinealdazine molecules each disposed about a centre of inversion, and two methanesulfonate anions. The Ag atoms are in linear geometries within N₂ donor sets. The topology of the polymer is linear and the strands are connected into double chains via weak argentophilic Ag \cdots Ag [3.2088 (10) Å] interactions that stack along the b axis interspersed by the methanesulfonate anions. These layers are consolidated in the crystal structure primarily via weak Ag···O contacts (Ag···O > 2.69 Å).

Related literature

For related polymeric silver salts containing the 4-pyridinealdazine ligand, see: Shi et al. (2002); Patra & Goldberg (2003); Kennedy et al. (2005). For related literature, see: Broker & Tiekink (2007*a*,*b*).

Experimental

Crystal data [Ag(C12H10N4)]CH3O3S $M_r = 413.22$

Monoclinic, C2/ca = 25.083 (9) Å

b = 12.284 (4) A	
c = 21.009 (7) Å	
$\beta = 113.790 \ (7)^{\circ}$	
V = 5923 (3) Å ³	
Z = 16	

Data collection

Rigaku AFC12k/SATURN724	37758 measured reflections
diffractometer	6151 independent reflections
Absorption correction: multi-scan	5879 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.048$
$T_{\min} = 0.645, T_{\max} = 1.000$	
(expected range = 0.580 - 0.899)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	397 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 1.98 \text{ e} \text{ Å}^{-3}$
6151 reflections	$\Delta \rho_{\rm min} = -1.28 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 1.52 \text{ mm}^{-1}$

 $0.30 \times 0.08 \times 0.07$ mm

T = 153 (2) K

Table 1

Selected geometric parameters (Å, °).

N1-Ag1-N5	169.88 (15)	N4-Ag2-N7	169.32 (15)
Ag2—N4	2.165 (4)		
Ag1-N5	2.177 (4)	Ag1-Ag2 ⁱ	3.2088 (10)
Ag1-N1	2.179 (4)	Ag2-N7	2.158 (4)

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2517).

References

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany
- Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m2368.
- Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63 m2420.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kennedy, A. R., Brown, K. G., Graham, D., Kirkhouse, J. B., Kittner, M., Major, C., McHugh, C. J., Murdoch, P. & Smith, W. E. (2005). New J. Chem. 29, 826-832.
- Patra, G. K. & Goldberg, I. (2003). Cryst. Growth Des. 3, 321-329.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shi, Y.-J., Li, Y.-Z., Tong, W.-J., Chen, X.-T. & Yu, X.-Z. (2002). Acta Cryst. E58. m293-m295.

Acta Cryst. (2007). E63, m2436 [doi:10.1107/S1600536807041645]

catena-Poly[[silver(I)-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] methanesulfonate]

G. A. Broker and E. R. T. Tiekink

Comment

The polymeric title compound, $[Ag(C_{12}H_{10}N_4)]_n.n(CH_3SO_3)$ or $[Ag(4-PA)]_n.n(CH_3SO_3)$, (I), was investigated as a part of an on-going study of the structural chemistry of Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007*a*,b). The asymmetric unit of (I) comprises two Ag atoms, a 4-pyridinealdazine (4-PA) molecule in a general position, two 4-PA molecules each disposed about a centre of inversion, and two methanesulfonate anions (Fig. 1). All the 4-PA ligands are bidentate bridging, resulting in polymeric chains and linear N₂ geometries for each Ag atom (Table 1). A small twist in the N-C-C-C-N portions of the bridging ligand occupying the general position [C6-N2-N3-C7 = 163.0 (4)°] dictates that the chain is not strictly flat. The linear chains are connected into supramolecular double chains *via* weak Ag1···Ag2 agentophilic interactions [Ag···Ag = 3.2088 (10) Å]. The double chains stack along the *b* axis being interspersed by anions to form a layer structure (Fig. 2). Connections between layers are afforded by Ag···O interactions with the most significant being Ag1···O1, O4ⁱ and O5ⁱ of 2.694 (4), 2.797 (4), and 2.770 (4) Å, respectively (i: 1 - x, -y, 1 - z). A view of the unit-cell contents highlighting the stacking of layers is shown in Fig. 3.

Similar $[Ag(4-PA)]_n$ polymeric chains as seen for (I) are found in the following salts: perchlorate, tetrafluoroborate (as acetonitrile solvates, Kennedy *et al.*, 2005), hexafluoroantimonate (as the acetonitrile water solvate, Kennedy *et al.*, 2005), and nitrate, for which two polymorphs have been reported (Shi *et al.*, 2002; Patra & Goldberg, 2003 & Kennedy *et al.*, 2005). In all but the nitrate polymorphs, the chains are essentially flat. In none of the above compounds are Ag. Ag. interactions found.

Experimental

Ag(CH₃SO₃) (Aldrich, 0.05 g, 0.25 mmol) was dissolved in CH₃CN (20 ml) and layered on top of a CH₂Cl₂ solution (20 ml) containing 0.05 g (0.25 mmol) of 4-pyridinealdazine (Aldrich). After three days, yellow prisms of (I) were observed at the interface between the two layers; m. pt. 522 - 524 K.

Refinement

All the H atoms were included in the riding-model approximation, with C-H = 0.95-0.98 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(\text{methyl C})$. The maximum and minimum difference peaks are located 1.14 and 0.84 Å, respectively, from Ag1.

Figures

Fig. 1. The asymmetric unit of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms).

Fig. 2. View of the layers in (I) down the c axis highlighting the Ag…Ag interactions leading to supramolecular double chains. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).

Fig. 3. View of the unit-cell contents in (I) down the *b* axis. Colour code as for Fig. 2.

catena-Poly[[silver(I)-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] methanesulfonate]

Crystal data	
[Ag(C ₁₂ H ₁₀ N ₄)]CH ₃ O ₃ S	$F_{000} = 3296$
$M_r = 413.22$	$D_{\rm x} = 1.853 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
Hall symbol: -C 2yc	Cell parameters from 10582 reflections
<i>a</i> = 25.083 (9) Å	$\theta = 1.9 - 25.0^{\circ}$
b = 12.284 (4) Å	$\mu = 1.52 \text{ mm}^{-1}$
c = 21.009 (7) Å	T = 153 (2) K
$\beta = 113.790 \ (7)^{\circ}$	Prism, yellow
$V = 5923 (3) \text{ Å}^3$	$0.30\times0.08\times0.07~mm$
Z = 16	

Data collection

Rigaku AFC12k/SATURN724 diffractometer	6151 independent reflections
Radiation source: fine-focus sealed tube	5879 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 153(2) K	$\theta_{\rm max} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -29 \rightarrow 31$
$T_{\min} = 0.645, \ T_{\max} = 1.000$	$k = -15 \rightarrow 15$
37758 measured reflections	$l = -26 \rightarrow 22$

Refine	ement
./	

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 41.7048P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\text{max}} = 0.002$
6151 reflections	$\Delta \rho_{max} = 1.98 \text{ e } \text{\AA}^{-3}$
397 parameters	$\Delta \rho_{\rm min} = -1.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.264234 (14)	0.11412 (3)	0.115089 (16)	0.02522 (12)
Ag2	0.761261 (15)	0.13780 (3)	0.867951 (17)	0.02714 (12)
S1	0.14174 (4)	-0.00296 (9)	0.18189 (5)	0.0232 (2)
S2	0.63856 (4)	0.00487 (9)	0.93140 (5)	0.0227 (2)
O1	0.17575 (14)	0.0433 (3)	0.14587 (17)	0.0349 (8)
02	0.15577 (14)	0.0447 (3)	0.24999 (17)	0.0355 (8)
O3	0.14380 (15)	-0.1215 (3)	0.1835 (2)	0.0354 (8)
O4	0.66998 (14)	0.0630 (3)	0.89604 (16)	0.0297 (7)
05	0.64598 (14)	-0.1133 (3)	0.92975 (17)	0.0282 (7)
O6	0.65091 (14)	0.0461 (3)	1.00060 (16)	0.0331 (8)
N1	0.32271 (16)	0.1270 (3)	0.2246 (2)	0.0233 (8)
N2	0.49505 (16)	0.1637 (3)	0.45649 (18)	0.0272 (8)
N3	0.52542 (16)	0.1634 (4)	0.52935 (19)	0.0273 (8)
N4	0.70009 (16)	0.1535 (3)	0.76056 (19)	0.0225 (8)
N5	0.19914 (16)	0.1277 (3)	0.00882 (19)	0.0233 (8)
N6	0.01700 (17)	0.1235 (3)	-0.21380 (19)	0.0281 (9)
N7	0.81773 (16)	0.1530 (3)	0.97678 (19)	0.0225 (8)
N8	0.98552 (16)	0.1972 (3)	1.21342 (18)	0.0269 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C1	0.38045 (19)	0.1436 (4)	0.2423 (2)	0.0235 (9)
H1	0.3938	0.1523	0.2062	0.028*
C2	0.42060 (19)	0.1483 (4)	0.3104 (2)	0.0243 (9)
H2	0.4606	0.1615	0.3208	0.029*
C3	0.40169 (19)	0.1335 (4)	0.3639 (2)	0.0229 (9)
C4	0.34180 (19)	0.1144 (4)	0.3451 (2)	0.0235 (9)
H4	0.3274	0.1026	0.3800	0.028*
C5	0.30417 (19)	0.1131 (4)	0.2757 (2)	0.0224 (9)
Н5	0.2638	0.1018	0.2637	0.027*
C6	0.4412 (2)	0.1367 (4)	0.4377 (2)	0.0249 (9)
Н6	0.4269	0.1187	0.4720	0.030*
C7	0.58074 (19)	0.1619 (4)	0.5471 (2)	0.0232 (9)
H7	0.5959	0.1612	0.5124	0.028*
C8	0.62066 (18)	0.1611 (4)	0.6211 (2)	0.0224 (9)
С9	0.68083 (19)	0.1661 (4)	0.6398 (2)	0.0250 (9)
Н9	0.6955	0.1719	0.6048	0.030*
C10	0.71890 (19)	0.1625 (4)	0.7088 (2)	0.0252 (9)
H10	0.7596	0.1664	0.7204	0.030*
C11	0.64189 (19)	0.1490 (4)	0.7429 (2)	0.0244 (9)
H11	0.6283	0.1422	0.7789	0.029*
C12	0.60160 (19)	0.1539 (4)	0.6752 (2)	0.0240 (9)
H12	0.5611	0.1525	0.6651	0.029*
C13	0.1417 (2)	0.1261 (4)	-0.0053 (2)	0.0247 (9)
H13	0.1302	0.1240	0.0327	0.030*
C14	0.0987 (2)	0.1274 (4)	-0.0716 (2)	0.0248 (9)
H14	0.0588	0.1280	-0.0790	0.030*
C15	0.11503 (19)	0.1277 (4)	-0.1282(2)	0.0224 (9)
C16	0.1747 (2)	0.1291 (4)	-0.1137 (2)	0.0252 (9)
H16	0.1873	0.1296	-0.1507	0.030*
C17	0.2149 (2)	0.1297 (4)	-0.0456(2)	0.0249 (9)
H17	0.2551	0.1316	-0.0365	0.030*
C18	0.0717 (2)	0.1261 (4)	-0.2006(2)	0.0245 (9)
H18	0.0842	0.1271	-0.2377	0.029*
C19	0.87543 (19)	0.1692 (4)	0.9965 (2)	0.0255 (9)
H19	0.8900	0.1758	0.9614	0.031*
C20	0.91447 (19)	0.1767 (4)	1.0653 (2)	0.0252 (9)
H20	0.9547	0.1892	1.0768	0.030*
C21	0.89386 (19)	0.1656 (4)	1,1176 (2)	0.0226 (9)
C22	0.83412 (19)	0.1478 (4)	1.0970 (2)	0.0235 (9)
H22	0.8186	0.1389	1.1311	0.028*
C23	0.7977 (2)	0.1432 (4)	1.0272 (2)	0.0245 (9)
H23	0.7572	0.1326	1.0142	0.029*
C24	0.93200 (19)	0.1704 (4)	1.1924 (2)	0.0245 (9)
H24	0.9164	0.1531	1.2255	0.029*
C25	0.06786 (19)	0.0330 (4)	0.1304 (3)	0.0315 (10)
H25A	0.0561	0.0026	0.0836	0.047*
H25B	0.0642	0.1125	0.1275	0.047*
H25C	0.0427	0.0038	0.1519	0.047*
C26	0.56288 (19)	0.0300 (4)	0.8806 (2)	0.0279 (10)
	· · /	× /		· /

H26A	0.5524	0.0033	0.8331	0.042*
H26B	0.5553	0.1084	0.8794	0.042*
H26C	0.5395	-0.0080	0.9014	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.01883 (19)	0.0370 (2)	0.01557 (19)	0.00061 (13)	0.00254 (14)	-0.00006 (13)
Ag2	0.02145 (19)	0.0376 (2)	0.01613 (19)	-0.00067 (13)	0.00110 (14)	-0.00008 (13)
S 1	0.0180 (5)	0.0310 (6)	0.0190 (5)	0.0005 (4)	0.0058 (4)	0.0016 (4)
S2	0.0180 (5)	0.0311 (6)	0.0183 (5)	0.0000 (4)	0.0065 (4)	-0.0001 (4)
01	0.0228 (16)	0.057 (2)	0.0242 (17)	-0.0014 (15)	0.0087 (14)	0.0060 (15)
O2	0.0267 (17)	0.055 (2)	0.0223 (17)	0.0054 (16)	0.0080 (14)	-0.0057 (15)
O3	0.0268 (18)	0.0336 (19)	0.041 (2)	0.0013 (14)	0.0085 (16)	0.0017 (15)
O4	0.0237 (16)	0.042 (2)	0.0261 (16)	-0.0039 (14)	0.0127 (13)	0.0020 (14)
05	0.0231 (17)	0.0316 (18)	0.0289 (18)	0.0043 (13)	0.0095 (14)	0.0021 (13)
O6	0.0284 (17)	0.049 (2)	0.0205 (16)	0.0024 (15)	0.0085 (14)	-0.0059 (15)
N1	0.0173 (18)	0.031 (2)	0.0176 (18)	0.0006 (14)	0.0026 (15)	0.0001 (14)
N2	0.0226 (19)	0.042 (2)	0.0131 (17)	-0.0025 (17)	0.0034 (15)	-0.0013 (16)
N3	0.0197 (18)	0.045 (2)	0.0129 (17)	0.0008 (17)	0.0016 (14)	0.0024 (16)
N4	0.0171 (18)	0.031 (2)	0.0158 (17)	0.0006 (14)	0.0029 (14)	0.0006 (14)
N5	0.0169 (18)	0.033 (2)	0.0168 (18)	-0.0014 (14)	0.0037 (15)	0.0019 (14)
N6	0.0200 (19)	0.042 (2)	0.016 (2)	0.0003 (16)	0.0012 (16)	0.0014 (15)
N7	0.0176 (18)	0.031 (2)	0.0143 (17)	-0.0007 (14)	0.0012 (14)	0.0000 (14)
N8	0.0243 (19)	0.036 (2)	0.0162 (19)	-0.0017 (16)	0.0040 (15)	-0.0003 (15)
C1	0.019 (2)	0.029 (2)	0.024 (2)	-0.0011 (17)	0.0101 (18)	-0.0002 (17)
C2	0.018 (2)	0.032 (2)	0.022 (2)	0.0017 (17)	0.0082 (18)	0.0025 (18)
C3	0.019 (2)	0.029 (2)	0.018 (2)	0.0004 (16)	0.0034 (17)	0.0014 (16)
C4	0.020 (2)	0.030 (2)	0.021 (2)	0.0011 (17)	0.0086 (18)	0.0002 (17)
C5	0.017 (2)	0.027 (2)	0.022 (2)	-0.0008 (16)	0.0062 (17)	-0.0011 (17)
C6	0.022 (2)	0.037 (3)	0.014 (2)	0.0008 (18)	0.0058 (17)	0.0023 (17)
C7	0.022 (2)	0.028 (2)	0.018 (2)	-0.0023 (17)	0.0067 (17)	-0.0004 (17)
C8	0.019 (2)	0.025 (2)	0.022 (2)	-0.0007 (16)	0.0079 (17)	0.0000 (17)
C9	0.023 (2)	0.032 (2)	0.023 (2)	-0.0018 (18)	0.0121 (18)	0.0025 (18)
C10	0.020 (2)	0.034 (2)	0.022 (2)	-0.0002 (18)	0.0090 (18)	0.0018 (18)
C11	0.018 (2)	0.035 (2)	0.021 (2)	0.0028 (17)	0.0081 (18)	0.0011 (18)
C12	0.017 (2)	0.034 (2)	0.020 (2)	0.0010 (17)	0.0073 (17)	0.0006 (18)
C13	0.023 (2)	0.031 (2)	0.021 (2)	0.0032 (17)	0.0100 (19)	0.0025 (17)
C14	0.018 (2)	0.031 (2)	0.027 (2)	0.0007 (17)	0.0101 (18)	0.0029 (18)
C15	0.019 (2)	0.027 (2)	0.017 (2)	-0.0004 (16)	0.0027 (17)	0.0005 (16)
C16	0.022 (2)	0.031 (2)	0.024 (2)	-0.0003 (17)	0.0107 (19)	0.0021 (18)
C17	0.021 (2)	0.030 (2)	0.025 (2)	-0.0002 (17)	0.0108 (19)	0.0012 (17)
C18	0.023 (2)	0.028 (2)	0.020 (2)	-0.0009 (17)	0.0070 (18)	0.0002 (17)
C19	0.023 (2)	0.032 (2)	0.021 (2)	-0.0026 (18)	0.0087 (18)	0.0023 (18)
C20	0.017 (2)	0.033 (2)	0.023 (2)	-0.0027 (17)	0.0047 (17)	0.0000 (18)
C21	0.020 (2)	0.024 (2)	0.022 (2)	-0.0012 (17)	0.0064 (17)	0.0012 (17)
C22	0.019 (2)	0.028 (2)	0.024 (2)	-0.0006 (17)	0.0100 (18)	0.0010 (17)
C23	0.021 (2)	0.028 (2)	0.024 (2)	-0.0007 (17)	0.0093 (18)	-0.0011 (17)

C24	0.026 (2)	0.028 (2)	0.017 (2)	0.0024 (18)	0.0063 (18)	0.0034 (17)			
C25	0.021 (2)	0.039 (3)	0.030 (2)	0.0001 (19)	0.0064 (19)	0.002 (2)			
C26	0.020 (2)	0.033 (2)	0.025 (2)	0.0011 (18)	0.0032 (18)	0.0009 (19)			
Geometric parameters (Å, °)									
Ag1—N1		2.179 (4)	С6—Н	6	0.9500				
Ag1—N5		2.177 (4)	C7—C8		1.471 (6)				
Ag2—N4		2.165 (4)	С7—Н7		0.9500				
Ag2—N7		2.158 (4)	C8—C9		1.399 (6)				
Ag1—Ag2 ⁱ		3.2088 (10)	C8—C	C8—C12 1.402 (6)		(6)			
Ag2—Ag1 ⁱ		3.2088 (10)	С9—С	10	1.378	(6)			
S1—O2		1.452 (3)	С9—Н	9	0.950	0			
S1—O3		1.457 (4)	C10—H	410	0.950	0			
S1—01		1.464 (3)	C11—C	212	1.375	(6)			
S1—C25		1.784 (5)	C11—H	H11	0.950	0			
S2—O6		1.450 (3)	C12—H	112	0.950	0			
S2—O5		1.466 (3)	C13—0	C14	1.375	(7)			
S2—O4		1.468 (3)	C13—H	413	0.950	0			
S2—C26		1.790 (4)	C14—0	215	1.404	(6)			
N1—C5		1.341 (6)	C14—H	114	0.950	0			
N1-C1		1.358 (6)	C15—C	216	1.401	(6)			
N2—C6		1.289 (6)	C15—C	C18	1.470	(6)			
N2—N3		1.408 (5)	C16—C	217	1.379	(7)			
N3—C7		1.283 (6)	C16—H	416	0.950	0			
N4—C10		1.352 (6)	C17—H	117	0.950	0			
N4—C11		1.355 (6)	C18—H	418	0.950	0			
N5—C13		1.350 (6)	C19—C	220	1.384	(6)			
N5—C17		1.351 (6)	C19—H	119	0.950	0			
N6—C18		1.286 (6)	C20—C	221	1.397	(6)			
N6—N6 ⁱⁱ		1.412 (7)	C20—H	120	0.950	0			
N7—C23		1.347 (6)	C21—C	222	1.399	(6)			
N7—C19		1.350 (6)	C21—C	224	1.474	(6)			
N8—C24		1.276 (6)	C22—C	223	1.382	(6)			
N8—N8 ⁱⁱⁱ		1.411 (7)	C22—H	422	0.950	0			
C1—C2		1.379 (6)	C23—H	123	0.950	0			
C1—H1		0.9500	C24—H	124	0.950	0			
C2—C3		1.397 (6)	C25—H	125A	0.980	0			
С2—Н2		0.9500	C25—H	H25B	0.980	0			
C3—C4		1.410 (6)	C25—H	H25C	0.980	0			
C3—C6		1.466 (6)	C26—H	426A	0.980	0			
C4—C5		1.381 (6)	C26—H	H26B	0.980	0			
C4—H4		0.9500	C26—H	426C	0.980	0			
С5—Н5		0.9500							
N1—Ag1—N5		169.88 (15)	C10—0	С9—Н9	119.8				
N5—Ag1—Ag2 ⁱ		95.02 (10)	C8—C9	9—Н9	119.8				
N1—Ag1—Ag2 ⁱ		91.85 (10)	N4—C	10—С9	122.0	(4)			
N4—Ag2—N7		169.32 (15)	N4—C	10—H10	119.0				

N7—Ag2—Ag1 ⁱ	92.34 (10)	С9—С10—Н10	119.0
N4—Ag2—Ag1 ⁱ	96.46 (10)	N4—C11—C12	122.8 (4)
02—S1—O3	112.8 (2)	N4—C11—H11	118.6
O2—S1—O1	113.1 (2)	C12—C11—H11	118.6
O3—S1—O1	112.2 (2)	C11—C12—C8	119.6 (4)
O2—S1—C25	106.1 (2)	C11—C12—H12	120.2
O3—S1—C25	106.3 (2)	C8—C12—H12	120.2
O1—S1—C25	105.7 (2)	N5-C13-C14	123.6 (4)
O6—S2—O5	113.1 (2)	N5—C13—H13	118.2
O6—S2—O4	113.3 (2)	C14—C13—H13	118.2
O5—S2—O4	111.8 (2)	C13—C14—C15	118.8 (4)
O6—S2—C26	106.5 (2)	C13—C14—H14	120.6
O5—S2—C26	105.7 (2)	C15—C14—H14	120.6
O4—S2—C26	105.7 (2)	C16—C15—C14	117.8 (4)
C5—N1—C1	118.5 (4)	C16—C15—C18	120.2 (4)
C5—N1—Ag1	122.2 (3)	C14—C15—C18	122.0 (4)
C1—N1—Ag1	119.2 (3)	C17—C16—C15	119.6 (4)
C6—N2—N3	111.9 (4)	С17—С16—Н16	120.2
C7—N3—N2	111.3 (4)	С15—С16—Н16	120.2
C10—N4—C11	118.1 (4)	N5—C17—C16	122.5 (4)
C10—N4—Ag2	120.9 (3)	N5—C17—H17	118.7
C11—N4—Ag2	120.9 (3)	C16—C17—H17	118.7
C13—N5—C17	117.7 (4)	N6—C18—C15	120.2 (4)
C13—N5—Ag1	121.1 (3)	N6	119.9
C17—N5—Ag1	121.0 (3)	C15—C18—H18	119.9
C18—N6—N6 ⁱⁱ	111.2 (5)	N7—C19—C20	123.4 (4)
C23—N7—C19	117.7 (4)	N7—C19—H19	118.3
C23—N7—Ag2	122.1 (3)	С20—С19—Н19	118.3
C19—N7—Ag2	120.2 (3)	C19—C20—C21	119.0 (4)
C24—N8—N8 ⁱⁱⁱ	112.6 (4)	С19—С20—Н20	120.5
N1—C1—C2	122.8 (4)	С21—С20—Н20	120.5
N1—C1—H1	118.6	C20—C21—C22	117.5 (4)
C2—C1—H1	118.6	C20—C21—C24	123.2 (4)
C1—C2—C3	119.1 (4)	C22—C21—C24	119.3 (4)
C1—C2—H2	120.5	C23—C22—C21	120.1 (4)
С3—С2—Н2	120.5	С23—С22—Н22	120.0
C2—C3—C4	117.8 (4)	С21—С22—Н22	120.0
C2—C3—C6	123.0 (4)	N7—C23—C22	122.3 (4)
C4—C3—C6	119.3 (4)	N7—C23—H23	118.8
C5—C4—C3	119.6 (4)	С22—С23—Н23	118.8
С5—С4—Н4	120.2	N8—C24—C21	121.3 (4)
C3—C4—H4	120.2	N8—C24—H24	119.4
N1—C5—C4	122.2 (4)	C21—C24—H24	119.4
N1—C5—H5	118.9	S1—C25—H25A	109.5
С4—С5—Н5	118.9	S1—C25—H25B	109.5
N2—C6—C3	120.5 (4)	H25A—C25—H25B	109.5
N2—C6—H6	119.7	S1—C25—H25C	109.5
С3—С6—Н6	119.7	H25A—C25—H25C	109.5

N3—C7—C8	120.2 (4)	H25B—C25—H25C	109.5
N3—C7—H7	119.9	S2—C26—H26A	109.5
С8—С7—Н7	119.9	S2—C26—H26B	109.5
C9—C8—C12	117.2 (4)	H26A—C26—H26B	109.5
C9—C8—C7	119.6 (4)	S2—C26—H26C	109.5
C12—C8—C7	123.2 (4)	H26A—C26—H26C	109.5
C10—C9—C8	120.4 (4)	H26B—C26—H26C	109.5
N5—Ag1—N1—C5	69.3 (9)	C11—N4—C10—C9	-0.6 (7)
Ag2 ⁱ —Ag1—N1—C5	-63.4 (3)	Ag2—N4—C10—C9	176.1 (4)
N5—Ag1—N1—C1	-114.5 (8)	C8—C9—C10—N4	0.4 (7)
Ag2 ⁱ —Ag1—N1—C1	112.7 (3)	C10-N4-C11-C12	-0.4 (7)
C6—N2—N3—C7	163.0 (4)	Ag2—N4—C11—C12	-177.1 (4)
N7—Ag2—N4—C10	106.9 (8)	N4—C11—C12—C8	1.7 (7)
Ag1 ⁱ —Ag2—N4—C10	-107.7 (3)	C9—C8—C12—C11	-1.8 (7)
N7—Ag2—N4—C11	-76.5 (9)	C7—C8—C12—C11	177.2 (4)
Ag1 ⁱ —Ag2—N4—C11	68.8 (3)	C17—N5—C13—C14	-0.6 (7)
N1—Ag1—N5—C13	-61.5 (9)	Ag1-N5-C13-C14	-175.7 (3)
Ag2 ⁱ —Ag1—N5—C13	71.0 (3)	N5-C13-C14-C15	1.6 (7)
N1—Ag1—N5—C17	123.6 (8)	C13-C14-C15-C16	-1.3 (7)
Ag2 ⁱ —Ag1—N5—C17	-103.9 (3)	C13-C14-C15-C18	178.4 (4)
N4—Ag2—N7—C23	79.9 (9)	C14—C15—C16—C17	0.2 (7)
Ag1 ⁱ —Ag2—N7—C23	-65.6 (3)	C18—C15—C16—C17	-179.5 (4)
N4—Ag2—N7—C19	-102.4 (8)	C13—N5—C17—C16	-0.6 (7)
Ag1 ⁱ —Ag2—N7—C19	112.1 (3)	Ag1-N5-C17-C16	174.4 (3)
C5—N1—C1—C2	-1.0 (7)	C15-C16-C17-N5	0.8 (7)
Ag1—N1—C1—C2	-177.3 (3)	N6 ⁱⁱ —N6—C18—C15	179.4 (3)
N1—C1—C2—C3	1.2 (7)	C16-C15-C18-N6	179.1 (4)
C1—C2—C3—C4	-0.1 (7)	C14-C15-C18-N6	-0.6 (7)
C1—C2—C3—C6	179.8 (4)	C23—N7—C19—C20	-0.4 (7)
C2—C3—C4—C5	-1.2 (6)	Ag2—N7—C19—C20	-178.1 (4)
C6—C3—C4—C5	179.0 (4)	N7—C19—C20—C21	0.9 (7)
C1—N1—C5—C4	-0.4 (6)	C19—C20—C21—C22	-0.2 (7)
Ag1—N1—C5—C4	175.8 (3)	C19—C20—C21—C24	178.9 (4)
C3—C4—C5—N1	1.4 (7)	C20—C21—C22—C23	-0.8 (7)
N3—N2—C6—C3	179.1 (4)	C24—C21—C22—C23	-180.0 (4)
C2—C3—C6—N2	6.5 (7)	C19—N7—C23—C22	-0.8 (7)
C4—C3—C6—N2	-173.6 (4)	Ag2—N7—C23—C22	177.0 (3)
N2—N3—C7—C8	-179.9 (4)	C21—C22—C23—N7	1.4 (7)
N3—C7—C8—C9	-176.2 (4)	N8 ⁱⁱⁱ —N8—C24—C21	179.8 (3)
N3—C7—C8—C12	4.8 (7)	C20—C21—C24—N8	8.0 (7)
C12—C8—C9—C10	0.8 (7)	C22—C21—C24—N8	-172.9 (4)
C7—C8—C9—C10	-178.3 (4)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, *y*, -*z*-1/2; (iii) -*x*+2, *y*, -*z*+5/2.

Fig. 1

Fig. 2

